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The Elimination of Fast Variables 
in Complex Chemical Reactions. 
III. Mesoscopic Level (Irreducible Case) 
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"The master equation for a complex chemical reaction cannot always be reduced 
to a simpler master equation, even if there are fast and slow individual reaction 
steps. Nevertheless the elimination of intermediates can be carried out with the 
help of the s This is illustrated with a well-known complex reaction: 
the dissociation of N205. It is shown that the intrinsic fluctuations in the N205 
decay are larger than those implied by the master equation suggested by the 
macroscopic rate law. 
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1. I N T R O D U C T I O N  

In the preceding paper, (~) intrinsic fluctuations in complex chemical reac- 
tions were studied. I started with a detailed mesoscopic description in terms 
of the master equation that takes into account the fluctuations in the 
numbers of all reacting chemicals (including the intermediates). In some 
examples it was shown that, if one reaction step proceeds much faster than 
the others, it is possible to eliminate intermediates. In this way a reduced 
master equation was obtained, which gives a coarser description of the 
complex reaction. 

Under which circumstances does a reduced master equation exist? Let 
us consider the following simple example: 

kl k3 
X~ ~Y , Z  (1) 

k2 
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It is assumed that k 2 and k3 are much larger than kl. Hence Y is a short- 
lived intermediate. Let At be a time interval that is much larger than the 
lifetime of a molecule Y, but much smaller than the lifetime of a molecule 
X: k21, k3 ~ ~At~k21.  During this time interval there is a probability 
klnAt (n is the number of X molecules) that a molecule X forms a 
molecule Y. As zlt is much larger than the lifetime of the Y that has been 
created, this Y will either form an X and restore the original situation, or 
produce a Z. The probabilities for the transitions Y ~ X and Y ~ Z are 
k2(k 2 + k3 ) -  1 and k3(k2 + k3)-1, respectively. Hence there is a probability 
kxn At k3(k 2 + k3)-1 that the number of X molecules decreases by one. We 
conclude that (on a time scale on which the lifetime of Y is very small) the 
decay of X may be described by the following master equation: 

~ p ( n ) -  ( E -  1)np(n) (2) 
klk3 

k2 + k3 
This is the coarse mesoscopic description of (1). It can also be obtained if 
one starts with the master equation for both X and Y and eliminates the 
intermediate Y in the standard way./1'2~ 

It often happens that an intermediate may react via different reaction 
paths. In example (1), Y has two possible paths, Y ~ X and Y ~ Z. Even- 
tually the intermediate will have chosen one of the paths, each one with a 
certain probability. Let us denote the probability for a reaction path i 
by 7ze. 

From the above discussion it is clear that the reduced master equation 
(2) could only be obtained because the probabilities 7r~ and z2 for the 
transitions Y ~ X and Y ~ Z are constant. One may check that the deriva- 
tion also applies if the ne depend on the number of X molecules, but that 
it breaks down if they depend on the number of Y molecules. Hence, one 
may expect that in this case a reduced master equation no longer exists. 

In this paper we will investigate complex reactions with short-lived 
intermediates that may decay via different reaction paths. It will be shown 
explicitly that, if the 7z i depend on the number of molecules of the inter- 
mediates, there does not exist a reduced master equation. However, it is 
still possible to eliminate intermediates by means of the s ~3) 

2. E L I M I N A T I O N  OF AN I N T E R M E D I A T E  BY M E A N S  OF 
THE Q - E X P A N S I O N  

Consider the following complex reaction: 

kl k3 
X~ 'Y ,  2Y , Z (3) 

k2 

The net reaction is 2X--*Z, and Y is a short-lived intermediate if 
kl ~ k2, k3. A single Y molecule may decay either unimolecularly accord- 



Complex Chemical Reactions. III 189 

ing to Y--* X, or bimolecularly in the process 2Y ~ Z. The probabilities 
with which both reaction paths are chosen depend on the total number of 
Y molecules. Hence, it is to be expected that it is impossible to describe the 
slow decay of X, 2X ~ Z, by a reduced master equation. I will show this 
explicitly in the following: ! derive an equation that describes the fluctua- 
tions in X, and subsequently show that this equation cannot be obtained 
from a reduced master equation. 

The master equation associated with (3) is given by 

8 
& P(n, m) -- k~(E,,E~ ~ - 1) nP(n, m) 

+ k2(E 2 ~E,~ - 1 ) raP(n, m) 

+ k 3 0  ~(E2m - 1 ) r e ( m -  1) P(n, m) (4) 

The numbers of X and Y are denoted by n and m. The intermediate Y can 
be eliminated if k2, k3 >> k l .  In order to ensure that the probabilities for the 
reaction paths Y --, X and 2Y ~ Z are of the same order of magnitude, we 
furthermore a s s u m e  k 3 ~ k 2. Actually, we have the stronger assumption 
that there exists a small parameter e such that the different reaction 
constants are of different order in e, 

kl  = s 1 7 6  k 2 = e  1 / s  k3=g-2K3 (5) 

As k 3 is the largest reaction constant, it is tempting to look for a 
projection operator that obeys N k 3 0  1 2 (E m - 1 ) m ( m - 1 ) = O .  Such a 
projection operator, however, does not yield a meaningful reduced master 
equation, as it also eliminates slow mesoscopic time scales. (1) One way to 
circumvent this complication is by making a different separation of fast and 
slow terms. For the case of Eq. (4), however, this is not possible. 

Nevertheless, it is still possible to perform the elimination of fast 
processes in (4) by making use of the O-expansion. Decompose the 
numbers n and m into a deterministic and a fluctuating part, 

n=O(Pq-Ol/2~, m = OI~ q- O1/2r/ (6) 

Write the distribution P(n, m) as a function of ~ and r/, H(~, t/). Expand the 
step operators according to 

1 0 1  8 2 

2 ~ 82 
( E ~ -  1 ) = 2 0  1/2 -}-20 -1 - - O f -  . . .  &/2 
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Then the order42 ~/2 terms yield the following rate equations: 

d 
d~O= - < ~ o  + ~ - ~ c 2 0  (8) 

d 
d/~t = Kl(p-  8 1g2~-- 2g 2h23 ~/2 (9) 

The order-f2 ~ terms yield an equation for the new density H: 

c3 1 

1 - -~  0 1 ~ 2 l - - 0  

+4e 2K 3 tlOH+2e-ar%--OaH (10) &/2 

As (10) is a linear Fokker-Planck equation, one easily derives equa- 
tions for the moments (~k),  ( i t ) ,  and (~"t/m). From the equations for 
the first and second moments one finds the following equations for the 
variances and covariance: 

d 
dt ((~2)) = __2K1 ((~2)) + gl(p 

+ 2e- 1g2~r / ) )  q- g 1K2~t (11) 

d 
d5 ((/,/2)) ~. 2Kl ( ( r  + glqo 

- 2 e  1K2 {TI2 > --~- 8 IK2 I// 

-- 8,~--2K'31//((q2)) + 4 g  2K31//2 (12) 

d 

d~ (< r  = - < ( ( ~ n ) )  + ~cl ( ( r  - K , ~  

-I-8 IK2 ((/72)) -- ~ IK2((~))--E-IK25 
- 4 e  2K3 @ ((r ) (13) 

Inspection of (8), (9), and (11)-(13) shows that the variables tp, ((t/2)), 
and ((~t/)) vary faster than ~o and ((~2)). 

The distinction between fast and slow variables can be made more 
explicit if one performs the scaling 
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Equations (8), (9), and (11)-(13) transform under (14) in to  

d 
d t  ~O = - - K l  qO "q- h~2Z (15)  

d 1 
- -  z = - (K1 (p - tc2z - 2K3 z2) (16) 
dt  e 

d 
dt ( ( ~ 2 ) )  ~- _2tr ((~2)) q_ tr p q_ /~2~2 q- K2Z (17) 

ds~ld =71 (K1 q0 -- 2K2~1 AvK2Z--8K3Z~I q_ 4K3Z2) + 2K1 ~2 (18) 

d-~ ~2d :81 (K1 ( ( ~ 2 ) )  __ Kl(p _]_ g2~ 1 --K2~2--K2Z--4KBZ~v)--Kl~2- (19) 

The fast variables z, ~1, {2 may be eliminated according to the 
standard scheme. ~2) Equation (16) implies that z approaches the value Z 
determined by ~Cl qo - ~c2Z- 2tr Z2 --- 0. Hence z --+ Z(cp), where 

Z((~o) = 1 1 1 2 2 l/2 - -  ~/s163 3 -1- (T~ K2/'C 3 Av 1/s K73 lq)) (20) 

Similarly, (18) and (19) imply that ~1--~ V((~o) and {2 +C(~o, (({2))), 
where 

V(qo) = E2K2 -}- 8 K 3 Z ( ( p ) ]  -1  Etqqo + m2Z(qo)+4K3Z(q~) 2] (21) 

C((p~ ~ 2 ) ) )  ~_ Era2 + 4K3Z((P)] - I  

x EK, ((~.2)) - tqcp - K2Z((p) + h22 V(q))] (22) 

Incidentally, (21), (20), and (14) imply 

((r/2)) -- tr + 3tc3Z(q~ gZ((p) < ~ (23) 
/s + 4tr Z(cP) 

Hence the fluctuations in the intermediate Y are smaller than those induced 
by Poissonian statistics (sub-Poissonian fluctuations). For the reduced 
equations which describe the slow evolution of qo and (({2)), one thus finds 

d 
dt (p = - / s  (~o -}-- ~2 Z((])) = - 2 t r  Z((p) 2 (24) 

d 
d-t ((~2)) = _2K1((~2)) q_ KI (~o --}- 2K2 C(qo, ((~2))) + ~:2Z(~p) (25) 

822/57/L2q3 
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With the use of (22) one may write (25) as 

d - 8~q ~:3Z(rp) 
dt ((~2)) _ ((~2)) + 2K3Z(~p)2 

~2 + 4~3Z(cp) 

x {1 + x2[K2 + 8K3Z(~p)] [K2 + 43Z(~o)] -2 } (26) 

Equations (24) and (25) describe the stochastic behavior of the slow decay 
2X--+ Z. The form of these equations suggests that they might be obtained 
via an Q-expansion of a single-variable master equation. In the next section 
I will show that this is not the case. 

3. N O N E X I S T E N C E  OF A R E D U C E D  M A S T E R  E Q U A T I O N  

Consider the following one-variable master equation: 

~t q(n) = (E-- 1) r(n) q(n) (27) 

If one puts in the usual way n = 12~o + f21/2 3 and performs the O-expansion 
of (27), the 01/2 and f2 ~ terms yield the following equations: 

d 
(p = - R(q~) (28) 

, • 1 (~2 
~t I I  ( ~, t ) = R ( ~o ) -~ ~ II  + ~ R ( ~o ) ~ s  I1 (29) 

where 
R(q~)= lim f2 lr(g2~o) (30) 

From (29) one obtains an equation for the variance: 

d 
dt ((~2)) = --2R'(~p) ((~2)) + R(cp) (31) 

We now compare (24) and (26) with (28) and (31). If one puts 
R((p) = 2tc3Z(go) 2, then (24) and (28) coincide, and (26) becomes 

d 
dt <<~2 >) = -2R'(~0) <<~2 >> + R(~p)[1 + S((o)] (32) 

with 

S(~o) = ~2[K2 + 8K3Z(q~)] [K2 + 4~3Z(~o)] -2 > 0 (33) 
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Hence, (26) and (31) differ from each other, and the master equation (27) 
does not apply. 

The solution of (32) [and hence of (26)] with initial condition 
((32))(0) = 0 can easily be found, 

( (~2)) ( t )=R2(q)( t ) ) t  ~~ [ l + S ( q / ) ] R  2(q~')dq)' (34) 
(t) 

q)(t) is the solution of (28) with ~o(0) = (P0. From (34) we conclude that the 
fluctuations are larger than those implied by (27). 

This enhancement of fluctuations can be understood as follows. Con- 
sider reaction (3), and suppose that in a certain time interval the reaction 
X--*Y consumes more X than on average. Then, the number of Y 
molecules increases above their average value, the probability for the reac- 
tion X--* Y diminishes, and the reaction 2Y ~ Z is favored. Consequently, 
less than the average amount of X molecules will be formed back by the 
reaction Y--* X. This mechanism thus leads to an increase of fluctuations 
in the number of X molecules. On the other hand, it is also responsible for 
the relative small fluctuations in the number of Y molecules [cf. (23)]. 

Fluctuations can also be inhibited. Consider, e.g., the following 
complex reaction: 

X ~ 2Y, Y --* Z (35) 

If now in a certain time interval more X decay than on average, then (as 
the number of Y increases) the probability for the back reaction 2Y-- ,X 
increases. Hence, more X will be formed back, and the fluctuations are 
inhibited. 

Reaction (35) can be treated along the same lines as (3), but I will not 
do this. In the next section I consider an example of a real complex 
reaction. 

4. DISSOCIATION OF N2Os 

The dissociation of N205  obeys the following stoichiometric equation: 

2N205 ~ 4NO2 + 02 (36) 

The reaction is complex, which is implied by the fact that the decay of 
N205 is governed by a linear law, 

d 
dt [ -N205]  = - k [ - N 2 0 5 ]  (37) 



194 Janssen 

The following reaction mechanism, involving the intermediates NO3 and 
NO, was proposed by 0gg(4'5): 

1 
N 2 0 5  ~ ' N O 2  -+- N O  3 

2 

N O  2 jr_ N O  3 3 ) N O  2 + N O  + 0 2 (38) 

NO + NO3 4 ~ 2NO2 

If one denotes the concentrations of N 2 0 5 ,  N O 2 ,  02, NO3, and NO by 
xl ,  x2, x3, x4, and xs, the rate equations can be written as 

d 
-~ xl = - k l x x  q-k2x2x4 (39) 

d 
~ X  4 = k l X l  - -  [(k2 q'- k 3 ) x 2  q-k4x5]x4 
at 

(40) 

d 
x5 = (k3x2 - k4xs)x4 (41) 

It is understood that x 2 and x3 depend on the other variables according to 
1 x2 = C 2 -  2xl - x 4 -  xs and x3 = C 3 -  ~xl - �89  + �89 where C2 and C3 

are constants. 
The linear rate law (37) can be derived if one assumes that the first 

and fourth reaction steps are respectively much slower and much faster 
than the second and third steps. One then finds that x4 and xs approach 
quasistationary values in a time that is much smaller than the decay time 
of xl ,  

k l x l  k3 
x4 --* (k2 + k3)x2 + kaxs xs --* k4 x2 (42) 

Hence, if one substitutes (42) into (39), one finds 

d k l k  3 
dt Xl = - 2  k2 + 2k3 Xl (43) 

This result coincides with (37) and thus gives evidence for the Ogg 
mechanism (38). 

The linear law (43) might suggest that the stochastic behavior of the 
N 2 0  5 decay is governed by a master equation of the form 

& q(n) = k ( E -  1) nq(n) (44) 
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where k = 2 k l k 3 ( k 2 + 2 k 3 )  1, and n denotes the number of N205 
molecules. However, (44) reproduces the macroscopic equation (43), but it 
does not describe correctly the intrinsic fluctuations. The fluctuations will 
be calculated in the following sections, and it will turn out that they are 
larger than those implied by (44). 

5. M E S O S C O P I C  T R E A T M E N T  OF NzO5 DECAY; 
E L I M I N A T I O N  OF NO3 

The master equation associated with (38) reads 

0 
~t p(nl, n2, n3, n4, ns)=k~(E~E ~ lE  4 1 -  1) nip  

+ kzO - l(E ~ 1E2E4 - 1 ) n2n4 p 

+k3f2 l ( E a E ~ l E j ] - l ) n z n 4  p 

-t-k4('2 X ( E a E s E [ 2 -  1)n4nsp (45) 

This equation describes the fluctuations in the numbers of molecules of all 
substances that are involved in reaction (38). It is my aim to derive a sim- 
pler equation that only describes the fluctuations in the number of N205 
molecules. In this section the elimination of NO3 ( ~  variable n4) will be 
carried out. In the subsequent section I will deal with NO ( ~  variable ns). 

The master equation (45) is of the form 

t0 = p = W ' p + ( W z + W 3 + W 4 ) p  (46) 

I assume kx ~ k2, k3, k4, and apply the standard scheme for the elimina- 
tion of fast variables (see refs. 1 and 2). 

A suitable projection operator ~ should satisfy ~(W2 + W3 + W4)= 
(W2 + W3 + W4)~ = 0. The latter condition is obeyed by a N of the form 

= 6n4,0 ~ K(nl, n2, n3, n4, n5 In'l, n'2, n'3, n'4, n'5) (47) 

The kernel K is determined by the condition -~(W2 + W3 + W4)= 0. If one 
writes out this condition, it turns out that K(nln') may be interpreted as 
the probability to end up in the point nl . . .n5  after n4 -/14 steps (each step 
corresponds to a reaction 2, 3, or 4), given that n'i.--n; is the starting 
point. 

Consider (45), and recall that the numbers of NO, NO2, and NO 3 
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molecules are given by n 5, n2, and n4, respectively. The probabilities for the 
reactions 2, 3, and 4 are 

k2n2 
7z2 -- (k2 + k3)n2 q- kan5 

k3n2 
(48) 

~z3 - (k2 + k3)n2 + k4ns 

k4ns 
7"( 4 - -  (k 2 + k3)n2 + k4n5 

Note that they do not depend on n 4. Hence, the elimination of this variable 
will not cause any complications. (1~ 

The reduced probability q is defined by 

q(nl,n2, n3, ns)=~.K(nl,n2, n3, n4=O, nsln')p(n') (49) 
n' 

The lowest order of the standard scheme yields the following equation: 

1E5_ 1 k3nl(n 2 + 1) 
Ot q=k~(E~E~E3 -1) (k2+k3)(n2+l)+k4nsq 

k4nl/'t 5 
+ kl(E1E~2E5 - 1) 

(k2 + k3)(nl + 1) + k4n5 q 

+ O(k~) (50) 

Let us now assume k4 >~ k3. Then the orders of magnitude of the terms 
on the right-hand side of (50) are widely different, and a further reduction 
seems possible. However, if one introduces the projection operator 
associated with the fast part of (50) and performs the elimination proce- 
dure, one does not arrive at a meaningful equation. The elimination of ns 
can only be properly achieved by means of the Q-expansion. 

6. Q - E X P A N S I O N :  E L I M I N A T I O N  OF NO 

The O-expansion of (50) is cumbersome, but straightforward. I will 
not give all details of the calculation. 

As the quantities 2nl + n2 + n5 and nl + 2n3 - n s  remain constant in 
(50), we consider q only as function of nl and n 5. As usual, one puts 

nl =Qq~l q_ Q1/2~, n5 =Q(P5 + s (51) 
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For  n2 one may put  

n2 = ~Qq02 + ~1/2{ - 2 4  - r/) 

Expansion of the step opera tor  yields for the f21/2 terms 

d kl qOl(k3 (p2 + k4q~5) 
dtqOl = (k 2 q- k3)q)2 + k4(Ps) 

d kl ~01(k3 q) 2 - k4~os) 

dt q)5 - - (k :  -t-k3)(p2 4-k4~P5) 

and for the (2 ~ terms 

OH (A c? ~ l + C ~ +  0 11) H 

+ ~ k3 (pl (p2 ~/-1 - H 

l k  1 -[-2 4@ (Ps@-'(~-I-~) 2H 
with 

0 = (k2 +k3)q02 + k4(p5 

A = ~ - 2 [ k 3 ( k  2 + k3)~02 z + ka(k2 + 2k3) cp2 (ps + 2k2k4~Ol ~os + k]~o~] 

B = ~ -2kzk4(Pl((P2 -k- (Ps) 

C = ~ -:[  -k3(k:  + k3)fP2 z + kzk4~o2~05 + 2k4(k2 + 2k3) (Pl (P5 + k2(p~] 

D = ~/ 2k4(k 2 + 2k3) ~01(q02 + q)5) 

F rom (54) 
covariance: 

52) 

(53) 

(54) 

(55) 

one obtains the following equations for the variances and 

d 
dt ( ( ~ 2 ) ) =  _ 2 A  ( ( ~ 2 ) ) -  2B((~r/))  

+k3~t-lq01(P2 + k 4 ~  l~01q)s 

d 
d5 r  = - 2 C r  )) - 2D r )) 

+ k3~-lq~l~p2 + k4~-l~pl~ps 

d 
dt ((~ ~/)) = - (A + D) ((~t/)) - B@/2 )) - C((~ 2 )) 

(56) 

-k3ff /  lq) 1 q) 2 --1- k4 ~ - lfp i (p5 
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If one investigates Eq. (53) and (56), one finds (as k4 >~k3) that q)5, 
((r/z)), and ((it/)) are fast and ~o 1 and ((42)) slow. In a time of order k21 
the fast variables approach quasistationary values, 

k3 

k3 
{/72> -+ ~4 @2 (57) 

--  2k  3 k2 k3 

~ ( ~ . . . . ~  k4 ~ 2 ) ~  k4(k2 ~_2k3)~92 

Hence, in the quasistationary state the fluctuations in the number of NO 
molecules have the Poissonian property ((n~))= (ns) .  With the help of 
(57) the fast variables may be eliminated. It follows that the slow variables 
evolve according to 

d k l k  3 
dt ~~ = - 2  k2 q- 2k3 qol 

d k l k  3 
dt ((42)) = - 4  k2 + 2k~----~ ((4:)) 

(58) 

_~_ 2 k?lk 3 I1 ~._ (~22 k 2 ~2] 
+ 2k3 q)' + ~ 3 J  J (59) 

Equation (58) was already derived in (43). Equation (59), which describes 
the fluctuations in the number of N z O  5 molecules, implies that the 
stochastic behavior of the N20  5 decay cannot be described by the master 
equation (44); (44) underestimates the magnitude of the fluctations, as may 
be verified by solving (58) and (59) explicitly. 
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